Cálculo Diferencial e Integral I

2020-1

Profra: Dra. Judith Campos Cordero

Ayudantes: Jonathan Giovanni Gil Juárez Manuel Alejandro Zúñiga Pérez

Tarea 5

- 1. Escribe, utilizando lenguaje matemático formal, la definición de que una sucesión (a_n) sea convergente. Escribe también la negación de este enunciado, es decir, escribe en lenguaje matemático la definición de que una sucesión (a_n) no sea convergente.
- 2. Para cada una de las siguientes sucesiones (a_n) , y para una $\varepsilon > 0$ arbitraria, encuentra una $N \in \mathbb{N}$ tal que $|a_n| < \varepsilon$ para toda $n \geq N$. (No es necesario que la N que encuentras sea óptima. Sólo queremos encontrar alguna N que funcione.)

(i)
$$a_n = \frac{1}{n^2 + 3}$$
; (ii) $a_n = \frac{1}{n(n - \pi)}$; (iii) $\frac{1}{\sqrt{5n - 1}}$.

3. Utiliza el Lema del Sándwich para probar que cada una de las siguientes sucesiones converge a 0.

(i)
$$\frac{n+1}{n^2+n+1}$$
; (ii) $\frac{\cos(n^2)}{2^n}$; (iii)(*) $\begin{cases} 1/2^n & \text{si } n \text{ es primo} \\ -1/3^n & \text{si } n \text{ no es primo.} \end{cases}$

4. (*)

- (a) Demuestra que $(\sqrt{n+1}-\sqrt{n})\longrightarrow 0$. Sugerencia: Demuestra y utiliza el hecho de que $a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})$.
- (b) Demuestra que $n^{\frac{1}{n}} \ge 1$ para toda $n \in \mathbb{N}^+$.
- (c) Definamos ahora a la sucesión $a_n = n^{\frac{1}{n}} 1$. Demuestra, utilizando el teorema del binomio para $(1 + a_n)^n$, que

$$a_n \le \sqrt{\frac{2}{n-1}}$$

para toda n > 1.

- (d) Utiliza los incisos anteriores para demostrar que $n^{\frac{1}{n}} \longrightarrow 1$.
- 5. Utiliza la definición de límite para demostrar lo siguiente:
 - (i) (*) $\lim \frac{2n}{n+1} = 2;$
 - (ii) $\lim \frac{(-1)^n n}{n^2 + 1} = 0;$
 - (iii) $\lim \frac{1}{\sqrt{n+7}} = 0;$
 - (iv) $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$;
- 6. Demuestra que lím $\frac{1}{n} \frac{1}{n+1} = 0$.

7. Escribe, utilizando lenguaje matemático formal, la definición de que una sucesión (a_n) es acotada y la definición de que (a_n) tiende a ∞ .

Escribe también la negación de las definiciones anteriores.

8. Para cada una de las siguientes sucesiones (a_n) , determina si $a_n \to \infty$. Justifica brevemente tus respuestas.

(i)
$$a_n = \frac{n^2 + n + 1}{n + 1}$$
; (ii) $a_n = \frac{n^{3/4}}{\sqrt{5n - 1}}$; (iii) $\left(1 + \frac{1}{n}\right)^n$.

9. (*) Supongamos que (a_n) es una sucesión tal que $a_n \to 0$. Sea (b_n) una sucesión acotada. Demuestra que $a_n b_n \to 0$.

Ahora, proporciona ejemplos de sucesiones (a_n) y (c_n) de tal forma que tal que $a_n \to 0$ y demostrando que cada una de las siguientes situaciones puede ocurrir:

- (i) (*) $a_n c_n \to 0$ y (c_n) es acotada;
- (ii) $a_n c_n \to \infty$;
- (iii) $a_n c_n \to L$ para algún $L \neq 0$;
- (iv) $(a_n c_n)$ es acotada y divergente;
- (v) $a_n c_n \to -\infty$

(Las sucesiones pueden variar entre cada inciso).

10. (a) Considera la sucesión (a_n) definida como

$$a_n = \frac{n^2 - 1}{n^2 + 1} \cos(2\pi n/3).$$

Encuentra subsucesiones adecuadas para demostrar que (a_n) es divergente.

- (b) Considera la sucesión $(\cos(n))$. Muestra que, para alguna constante K > 0, existen subsucesiones (b_r) y (c_s) de $(\cos(n))$ tales que $b_r > K$ para todo $r \in \mathbb{N}$ y $c_s < -K$ para todo $s \in \mathbb{N}$. Deduce que $(\cos(n))$ es divergente.
- **11.** (a) Sea (a_n) una sucesión tal que las subsucesiones (a_{2n}) y (a_{2n+1}) convergen a un número real L. Demuestra que $a_n \to L$.
 - (b) Sea (b_n) una sucesión tal que (b_{2n}) , (b_{2n+1}) y (b_{3n}) son convergentes. ¿Es posible deducir que (b_n) converge? Proporciona una prueba o contraejemplo para justificar tu respuesta.
- 12. Para cada una de las siguientes sucesiones (a_n) , determina si (a_n) es convergente. Justifica tus respuestas y encuentra el límite cuando éste exista. (Puedes utilizar todos los teoremas de álgebra de límites, desigualdades y teoremas del sándwich).

(i)(*)
$$a_n = \frac{n^2}{n!}$$
; (ii)(*) $a_n = \frac{2^n n^2 + 3^n}{3^n (n+1) + n^7}$; (iii) $\frac{(n!)^2}{(2n)!}$.

Sugerencia (ii): probar que $\frac{n^2}{(3/2)^n} \to 0$. Para ello, expresar 3/2 = 1 + 1/2 y usar el término $(1/2)^3$ del binomio de Newton. Esto implicará que dicha sucesión está acotada y, por tanto, para el (ii), se puede estimar usando Teorema del Sánwich con la sucesión 1/n.

Sugerencia (iii): Desarrollar factoriales y comparar con $\frac{1}{n+1}$.