2020-2

Álgebra Superior I

Profra: Dra. Judith Campos Cordero Ayudante: Manuel Alejandro Zúñiga Pérez

Tarea 3

- 1. Demuestre que el conjunto vacío es único, es decir, que existe un único conjunto que carece de elementos.
- 2. Sea A el conjunto de todos los números enteros que son múltiplos de 6, sea B el conjunto de todos los números enteros que son múltiplos de 2 y sea C el conjunto de todos los números enteros que son múltiplos de 3. Es decir,

$$A = \{ z \in \mathbb{Z} : \exists x (x \in \mathbb{Z} \land z = 6k) \}, \qquad B = \{ z \in \mathbb{Z} : \exists x (x \in \mathbb{Z} \land z = 2k) \}, \text{ y}$$
$$C = \{ z \in \mathbb{Z} : \exists x (x \in \mathbb{Z} \land z = 3k) \}.$$

Diga cuáles de las siguientes relaciones de contención son verdaderas o falsas, justificando

su respuesta: (i) $A\subseteq B$ (iv) $C\subseteq A$ (vii) $B\subsetneq A$ (x) $A\subsetneq C$ su respuesta: (ii) $A\subseteq C$ (v) $B\subseteq C$ (viii) $A\subsetneq B$ (xi) A=B (iii) $B\subseteq A$ (vi) $C\subseteq B$ (ix) $C\subsetneq A$ (xii) A=C

- **3.** Demuestre lo siguiente para cualesquiera conjuntos A, B y C:
 - (iii) si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$; (i) $\varnothing \subseteq A$;
 - (ii) $A \subseteq A$; (iv) si $A \subseteq \emptyset$, entonces $A = \emptyset$.
- 4. Sea U un conjunto universal. Sean A y B subconjuntos de U. Demuestre lo siguiente:
 - (i) $A \subseteq B$ si y sólo si $B^c \subseteq A^c$;
 - (ii) A = B si v sólo si $A^c = B^c$.
- 5. Sean A y B los siguientes subconjuntos del conjunto universal $\mathbb Z$

$$A = \{x \in \mathbb{Z} : |x| \le 3\}, \qquad B = \{x \in \mathbb{Z} : x^2 < 7\}.$$

(i) $A \cap B$; (iv) $B \setminus A$; (vii) $A^c \cup B^c$;

Determine los siguientes conjuntos: (ii) $A \cup B$; (v) $A \triangle B$; (viii) $A^c \cap B^c$;

- (iii) $A \setminus B$; (vi) A^c .
- 6. Sean A y B los siguientes subconjuntos del conjunto universal \mathbb{R}

$$A = \{x \in \mathbb{R} : |x - \frac{1}{2}| \le 3\}, \qquad B = \{x \in \mathbb{R} : |x - 1| \le \frac{3}{2}\}.$$

Determine los siguientes conjuntos: (i) $A \cap B$; (iii) A^c ; (ii) $A \cup B$; (iv) B^c .

7. Sean A y B los siguientes subconjuntos del conjunto universal \mathbb{R}

$$A = \{x \in \mathbb{R} : x^2 - 1 = 0\}, \qquad B = \{x \in \mathbb{R} : |x| \le 1\}.$$

(i) $A \cap B$; (iii) $(A \cup B)^c$; (ii) $A \cup B$; (iv) $A^c \cap B^c$. Determine los siguientes conjuntos:

8. Sean $A \vee B$ los siguientes subconjuntos del conjunto universal \mathbb{Z}

$$A = \{x \in \mathbb{Z} : |x| < 4\}, \qquad B = \{x \in \mathbb{Z} : x \text{ divide a 6}\}.$$

(i) $A \cap B$; (iv) $B \setminus A$; (vii) $A^c \cup B^c$;

(v) $A \triangle B$; (viii) $A^c \cap B^c$; Determine los siguientes conjuntos: (ii) $A \cup B$;

> $A \setminus B$; (iii) (vi)

- 9. Sean $A, B \neq C$ subconjuntos cualquiera de un conjunto universal U. Demuestre lo siguiente:
 - (i) $(A \cap B) \subseteq A \subseteq (A \cup B)$;
 - (ii) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$;
 - (iii) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C);$
 - (iv) $A \setminus B = A \setminus (A \cap B) = (A \cup B) \setminus B$;
 - (v) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$;
 - (vi) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$;
 - (vii) $(A \setminus B) \setminus C = A \setminus (B \cup C)$;
 - (viii) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C);$
 - (ix) $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$;
 - (x) $A \cup (B \setminus C) = (A \cup B) \setminus (C \setminus A)$;
 - (xi) $(A \cup B)^c = A^c \cap B^c$;
 - (xii) $(A \cap B)^c = A^c \cup B^c$;
 - (xiii) $A = (A \cap B) \cup (A \cap B^c);$
 - (xiv) $(A \setminus B) \cup B = A \cup B$;
 - (xv) $U^c = \emptyset$;
 - (xvi) $\varnothing^c = U$;
 - (xvii) $A \cap A^c = \emptyset$;
- (xviii) $A \cup A^c = U$;
- (xix) $A \setminus (A \setminus B) = A \cap B$;
- (xx) $A \cup (B \setminus A) = A \cup B$.
- 10. Sean A, B y C subconjuntos cualquiera de un conjunto universal U. Demuestre lo siguiente:
 - (i) $(A \subseteq B \land A \subseteq C) \iff A \subseteq (B \cap C)$;
 - (ii) $(A \subseteq C \land B \subseteq C) \iff (A \cup B) \subseteq C$;
 - (iii) $B \subseteq A \iff (A \setminus B) \cup B = A$;
 - (iv) $A \triangle B = \emptyset \iff A = B$;
 - (v) $A \subseteq B \implies (A \cup C) \subseteq (B \cup C)$;
 - (vi) $A \subseteq B \implies (A \cap C) \subseteq (B \cap C)$;
 - (vii) $(A \cap B = \emptyset \land A \cup B = C) \implies A = C \setminus B$;
 - (viii) $(A \cup B = U \land A \cap B = \emptyset) \iff B = A^c$;
 - (ix) $A \cup B = U \iff A^c \subseteq B$;
 - (x) $A \subseteq B^c \iff A \cap B = \emptyset$.
- 11. Dé un contraejemplo de las siguientes afirmaciones falsas (observe que casi todas son los "regresos" de contenciones o implicaciones que aparecieron antes en la tarea):
 - (i) $A \subseteq (A \cap B)$;
 - (ii) $(A \cup B) \subseteq A$;
 - (iii) $A \setminus (B \setminus C) \subseteq (A \setminus B) \setminus C$;
 - (iv) $(A \cup C) \subseteq (B \cup C) \implies A \subseteq B$;
 - (v) $(A \cap C) \subseteq (B \cap C) \implies A \subseteq B$;
 - (vi) $A \cup B = U \implies B = A^c$;
 - (vii) $A = C \setminus B \implies (A \cap B = \emptyset \land A \cup B = C).$